🔰vector
LaTeX ⟩ vector
\|\vec{u}\| % vector magnitudeexample
code
👉 向量
% vector
(a_1, a_2, \cdots, a_n)👉 向量長度
% vector magnitude / norm / length
\|\vec{u}\|👉 外積
% cross product
\mathbf{u}\times\mathbf{v}👉 內積
% dot product
\mathbf{u}\cdot\mathbf{v}👉 向量三重積
% vector triple product
(\mathbf{u}\times\mathbf{v})\times\mathbf{w}👉 純量三重積
% scalar triple produc
(\mathbf{u}\times\mathbf{v})\cdot\mathbf{w}% row vector
\begin{bmatrix} x & y & z \end{bmatrix}% column vector
\begin{bmatrix} x \\ y \\ z \end{bmatrix}% dot product as matrix multiplication
\begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}
\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} % set of vectors
\{ \mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n} \}example
code
👉 向量長度
% vector length
\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}% vector length
\|\mathbf{v}\|^2 = v_1^2 + v_2^2 + \cdots + v_n^2👉 線性組合
% linear combination
a_1\mathbf{v_1} + a_2 \mathbf{v_2} \cdots + a_n \mathbf{v_n}👉 向量的垂直分解
% projection of u onto v
\text{proj}_{\mathbf{v}} (
\textcolor{red}{\mathbf{u}}
) =
\left(
\dfrac
{\textcolor{red}{\mathbf{u}}\cdot\mathbf{v}}
{\mathbf{v}\cdot\mathbf{v}}
\right)
\mathbf{v} 👉 向量的垂直分解
% perpendicular vector
\text{perp}_{\mathbf{v}}(
\textcolor{red}{\mathbf{u}}
) =
\textcolor{red}{\mathbf{u}} -
\left(
\dfrac{
\textcolor{red}{\mathbf{u}}\cdot\mathbf{v}
}{
\mathbf{v}\cdot\mathbf{v}
}
\right)
\mathbf{v}👉 空間外積
% cross product
\left(
\begin{vmatrix}
u_2 & u_3 \\
v_2 & v_3
\end{vmatrix}
,
\begin{vmatrix}
u_3 & u_1 \\
v_3 & v_1
\end{vmatrix}
,
\begin{vmatrix}
u_1 & u_2 \\
v_1 & v_2
\end{vmatrix}
\right)KaTeX > Accents
Last updated
Was this helpful?