╱ 🚧 -> 列出明確的條件
Last updated 1 year ago
Was this helpful?
⟩ ⟩ 體 (field)
A field is a with in which every nonzero element is a .
「╱commutative ring」 (R,+,⋅)(\mathbf{R,+,\cdot)}(R,+,⋅) 的兩個必要運算:
加法: a+b∈Ra+b \in \mathbf{R}a+b∈R (加法封閉性)
乘法: a⋅b∈Ra\cdot b \in \mathbf{R}a⋅b∈R (乘法封閉性) (註:習慣上會省略乘法符號)
且兩運算符合以下 8 條件:
A1:加法結合律: (a+b)+c=a+(b+c)(a+b)+c=a+(b+c)(a+b)+c=a+(b+c)
A2:加法零元素: a+0=aa + {\color{orange}\mathbf{0}} = aa+0=a
A3:加法反元素: a+(−a)=0a+ ({\color{orange}-a}) = \mathbf{0}a+(−a)=0
A4:加法交換律: a+b=b+aa+b=b+aa+b=b+a
M1:乘法結合律: (ab)c=a(bc)(ab)c=a(bc)(ab)c=a(bc)
M4:乘法交換律: ab=baab=baab=ba(⭐️ M4 為特有性質,其他為的性質)
D1:左分配律: a(b+c)=ab+aca(b+c)=ab+aca(b+c)=ab+ac
D2:右分配律: (a+b)c=ac+bc(a+b)c=ac+bc(a+b)c=ac+bc
「體」有別於「」的特有性質:
M2:乘法單位元素: 1a=a1=a{\color{orange}\mathbf{1}} a=a {\color{orange}\mathbf{1}}=a1a=a1=a
M3:乘法反元素: aa−1=a−1a=1 (a≠0)a {\color{orange}a^{-1}} = {\color{orange}a^{-1}} a = \mathbf{1} \ (a \neq \mathbf{0})aa−1=a−1a=1 (a=0)
「field╱體」的範例: 實數 ℝ、複數 ℂ
Contemporary Abstract Algebra (2017), Ch. 13 Integral Domains, p.239
⟩ ⟩ 定義實數加法 a + b
Socratica ⟩ ⭐️