🚧四元數外積

🚧 under construction -> 1). T(q) = p x q 線性變換 2). [T] 矩陣

數系四元數運算 ⟩ 外積

  • 如果比較四元數乘法性質 4, 8pq=st+(uv)scalar part + svtu(u×v)vector part\mathbf{\overline{p}} \mathbf{q} = \underbrace{ st + (\mathbf{u} \cdot \mathbf{v}) }_{\text{scalar part}} \ + \ \underbrace{ s \mathbf{v} - t \mathbf{u} - (\mathbf{u} \times \mathbf{v}) }_{\text{vector part}} uv=(uv)(u×v)\mathbf{\overline{u}} \mathbf{v} = (\mathbf{u} \cdot \mathbf{v}) - (\mathbf{u} \times \mathbf{v})

  • 也許我們可以將「四元數的外積」定義為:

  1. s×t=0{\color{orange}s} \times {\color{orange}t} = \mathbf{0}(兩純量外積為零)

  2. s×v=sv{\color{orange}s} \times \mathbf{v} = - {\color{orange}s}\mathbf{v}

Last updated

Was this helpful?