向量除法

線性代數向量運算 ⟩ 向量除法

  • ⭐️ 注意: u,v\mathbf{u}, \mathbf{v} 兩者不需平行

  • 證明:👉

  1. sutv=(st)(uv)\dfrac{ {\color{orange}s} \mathbf{u} }{ {\color{orange}t} \mathbf{v} } = \left( \dfrac{ {\color{orange}s} }{ {\color{orange}t} } \right) \left( \dfrac{ \mathbf{u} }{ \mathbf{v} } \right) ( t0,v0{\color{orange}t} \neq 0, \mathbf{v} \neq \mathbf{0} )

  2. u+vw=uw+vw\dfrac{ \mathbf{u+v} }{ \mathbf{w} } = \dfrac{ \mathbf{u} }{ \mathbf{w} } + \dfrac{ \mathbf{v} }{ \mathbf{w} } ( w0\mathbf{w} \neq \mathbf{0} )

  1. w0, wu  wv\mathbf{{\color{orange}w}} \neq \mathbf{0}, \ \mathbf{{\color{orange}w}} \parallel \mathbf{u} \ \lor \ \mathbf{{\color{orange}w}} \parallel \mathbf{v} ,則:uv=uwwv\dfrac{ \mathbf{u} }{ \mathbf{v} } = \dfrac{ \mathbf{u} }{ \mathbf{{\color{orange}w}} } \cdot \dfrac{ \mathbf{{\color{orange}w}} }{ \mathbf{v} }

Last updated

Was this helpful?