🚧四元數乘法

🚧 under construction -> 反對稱矩陣, T(p) = pq -> [T]

數系四元數運算 ⟩ 乘法

  • 設: p=w1+x1i+y1j+z1k\mathbf{p} = w_1+x_1\mathbb{i} +y_1\mathbb{j} +z_1\mathbb{k}, q=w2+x2i+y2j+z2k\mathbf{q} = w_2+x_2\mathbb{i} +y_2\mathbb{j} +z_2\mathbb{k}

  • 註:可先借用四元數的分配律推導 👉

  • ⭐️ 注意:前面這個矩陣類似反對稱矩陣

若:p=s+u\mathbf{p} = s + \mathbf{u}, q=t+v\mathbf{q} = t + \mathbf{v},則:

  1. pq=(s+u)(t+v)=st(uv)scalar part+sv+tu+(u×v)vector part\mathbf{p} \mathbf{q} = ( {\color{orange}{s}} + \mathbf{u})( {\color{orange}{t}} + \mathbf{v}) = \underbrace{ {\color{orange}{st}} - (\mathbf{u} \cdot \mathbf{v}) }_{\text{scalar part}} + \underbrace{ {\color{orange}{s}} \mathbf{v} + {\color{orange}{t}} \mathbf{u} + (\mathbf{u} \times \mathbf{v})} _{\text{vector part}}

  2. pq=(su)(t+v)=st+(uv)scalar part+svtu(u×v)vector part\mathbf{\overline{p}} \mathbf{q} = ( {\color{orange}{s}} - \mathbf{u})( {\color{orange}{t}} + \mathbf{v}) = \underbrace{ {\color{orange}{st}} + (\mathbf{u} \cdot \mathbf{v}) }_{\text{scalar part}} + \underbrace{ {\color{orange}{s}} \mathbf{v} - {\color{orange}{t}} \mathbf{u} - (\mathbf{u} \times \mathbf{v})} _{\text{vector part}}

  1. uv=(u×v)(uv)\mathbf{u} \mathbf{v} = (\mathbf{u} \times \mathbf{v})-(\mathbf{u} \cdot \mathbf{v})

  • 🎖 證明: 可由 (4) 式與四元數內積外積定義而來。

  • (8) 式可視為是 (7) 式的擴充。

Last updated

Was this helpful?