良序性╱🚧 under construction -> ordered set, smallest element
集合 ⟩ 關係 ⟩ 二元 ⟩ well ordering
An ordered set SSS is said to be well-ordered if each and every nonempty subset has a smallest (or least) element.
∀A⊆S, A≠∅, ∃m∈A ∋∀x∈A, m≤x\forall A \subseteq S, \ A \neq \empty, \ \exists m \in A \ \ni \forall x \in A, \ m \le x∀A⊆S, A=∅, ∃m∈A ∋∀x∈A, m≤x
Brilliant ⟩ The Well-ordering Principlearrow-up-right
自然數的良序性
Last updated 1 year ago