🔰矩陣

線代 ⟩ 矩陣 (🈯 同義詞:"matrix")

🔸 公式

#
🔸 公式
👉 來源
1

(A+B)ij=Aij+Bij(\mathbf{A+B})_{ij} = \mathbf{A}_{ij} + \mathbf{B}_{ij}

矩陣加法 (定義)

2

(kA)ij=k(Aij)({\color{orange}k}\mathbf{A})_{ij} = {\color{orange}k}(\mathbf{A}_{ij})

矩陣係數積 (定義)

3

(AB)ij=AiBj(\mathbf{AB})_{{\color{blue}{i}}{\color{red}{j}}} = \mathbf{A}_{{\color{blue}{i}}*} \mathbf{B}_{*\color{red}{j}}

矩陣乘法 (定義)

4

(AkBk)ij=AikBkj( \mathbf{A}_{*\color{red}{k}} \mathbf{B}_{{\color{red}{k}}*} ) _{{\color{blue}{ij}}} = \mathbf{A}_{{\color{blue}{i}} \color{red}{k}} \mathbf{B}_{{\color{red}{k}} {\color{blue}{j}}}

矩陣乘法表格化 (引理)

5

AB=A1B1+A2B2++ApBp\mathbf{AB} = \mathbf{A}_{*\color{red}{1}} \mathbf{B}_{{\color{red}{1}}*} + \mathbf{A}_{*\color{red}{2}} \mathbf{B}_{{\color{red}{2}}*} + \cdots + \mathbf{A}_{*\color{red}{p}} \mathbf{B}_{{\color{red}{p}}*}

矩陣乘法表格化 (定理)

6

(Ai)T=(AT)i(\mathbf{A}_{{\color{red}{i}} *} )^{\color{orange}{T}} =(\mathbf{A}^{\color{orange}{T}} )_{*\color{red}{i}}

轉置矩陣 (引理)

7

(Aj)T=(AT)j(\mathbf{A}_{* {\color{red}{j}} } )^{\color{orange}{T}} =(\mathbf{A}^{\color{orange}{T}} )_{{\color{red}{j}} *}

轉置矩陣 (引理)

8

(AB)T=BTAT\mathbf{(AB)}^T = \mathbf{B}^T \mathbf{A}^T

轉置矩陣 (定理)

Last updated

Was this helpful?