x³ - 3x² + 3x + 7 = 0

已知:x33x2+3x+7=0x^3 - 3x^2 + 3x + 7 = 0

試求:

  • x+1|x+1|lnx\ln x

  • cosx\cos x

方程式可分解為:

(x+1)(x24x+7)=0(x + 1) (x^2 - 4 x + 7) = 0

解得:

x=1,2±3ix=-1, 2\pm\sqrt{3}i

因此:

xx

x+1\|x+1\|

lnx\ln x

cosx\cos x

-1

0

iπi\pi

cos(1)\cos(1)

2+3i2+\sqrt{3}i

232\sqrt{3}

ln7+tan1(32)\ln\sqrt{7}+\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)

cos(2)cosh(3)isin(2)sinh(3)\cos(2)\cosh(\sqrt{3})-i \sin(2)\sinh(\sqrt{3})

23i2-\sqrt{3}i

232\sqrt{3}

ln7tan1(32)\ln\sqrt{7}-\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)

cos(2)cosh(3)+isin(2)sinh(3)\cos(2)\cosh(\sqrt{3})+i \sin(2)\sinh(\sqrt{3})

參考:

Last updated

Was this helpful?