🔰二元關係
兩個集合 A、B (A、B可以是同一個集合) 的元素之間的關係 ,稱為「二元關係」(binary relation),事實上就是一種A到B的「對應關係」,通常以:
的子集 (subset) 來表示。如果我們用 來表示此二元關係,則:
代表 a 對 b 有此關係。
此時我們用 表示。
(⭐ 注意: 不代表有 ❗)
二元關係常用表格來表示 (👉 二元關係屬性)

二元關係
equivalence relations: satisfy reflexivity, symmetry, and transitivity. 💠 example:
partial orders: satisfy reflexivity, antisymmetry, and transitivity. 💠 example: (is a subset of)
全序╱total ordering: satisfy totality, antisymmetry, and transitivity. 💠 example:
functions: satisfy a special property called functional dependence. In a function , each element of is associated with exactly one element of , that is,
.
參考:KaTeX ⟩ Relations
= =
≑≑ \doteqdot
⪅⪅ \lessapprox
⌣⌣ \smile
<< <
≖≖ \eqcirc
⋚⋚ \lesseqgtr
⊏⊏ \sqsubset
>> >
−: \eqcolon or
\minuscolon
⪋⪋ \lesseqqgtr
⊑⊑ \sqsubseteq
:: :
−:: \Eqcolon or
\minuscoloncolon
≶≶ \lessgtr
⊐⊐ \sqsupset
≈≈ \approx
=: \eqqcolon or
\equalscolon
≲≲ \lesssim
⊒⊒ \sqsupseteq
≈: \approxcolon
=:: \Eqqcolon or
\equalscoloncolon
≪≪ \ll
⋐⋐ \Subset
≈::\approxcoloncolon
≂≂ \eqsim
⋘⋘ \lll
⊂⊂ \subset or \sub
≊≊ \approxeq
⪖⪖ \eqslantgtr
⋘⋘ \llless
⊆⊆ \subseteq or \sube
≍≍ \asymp
⪕⪕ \eqslantless
<< \lt
⫅⫅ \subseteqq
∍∍ \backepsilon
≡≡ \equiv
∣∣ \mid
≻≻ \succ
∽∽ \backsim
≒≒ \fallingdotseq
⊨⊨ \models
⪸⪸ \succapprox
⋍⋍ \backsimeq
⌢⌢ \frown
⊸⊸ \multimap
≽≽ \succcurlyeq
≬≬ \between
≥≥ \ge
⊶⊶ \origof
⪰⪰ \succeq
⋈⋈ \bowtie
≥≥ \geq
∋∋ \owns
≿≿ \succsim
≏≏ \bumpeq
≧≧ \geqq
∥∥ \parallel
⋑⋑ \Supset
≎≎ \Bumpeq
⩾⩾ \geqslant
⊥⊥ \perp
⊃⊃ \supset
≗≗ \circeq
≫≫ \gg
⋔⋔ \pitchfork
⊇⊇ \supseteq or \supe
:≈ \colonapprox
⋙⋙ \ggg
≺≺ \prec
⫆⫆ \supseteqq
::≈ \Colonapprox or
\coloncolonapprox
⋙⋙ \gggtr
⪷⪷ \precapprox
≈≈ \thickapprox
:− \coloneq or
\colonminus
>> \gt
≼≼ \preccurlyeq
∼∼ \thicksim
::− \Coloneq or
\coloncolonminus
⪆⪆ \gtrapprox
⪯⪯ \preceq
⊴⊴ \trianglelefteq
:= \coloneqq or
\colonequals
⋛⋛ \gtreqless
≾≾ \precsim
≜≜ \triangleq
::= \Coloneqq or
\coloncolonequals
⪌⪌ \gtreqqless
∝∝ \propto
⊵⊵ \trianglerighteq
:∼ \colonsim
≷≷ \gtrless
≓≓ \risingdotseq
∝∝ \varpropto
::∼ \Colonsim or
\coloncolonsim
≳≳ \gtrsim
∣∣ \shortmid
△△ \vartriangle
≅≅ \cong
⊷⊷ \imageof
∥∥ \shortparallel
⊲⊲ \vartriangleleft
⋞⋞ \curlyeqprec
∈∈ \in or \isin
∼∼ \sim
⊳⊳ \vartriangleright
⋟⋟ \curlyeqsucc
⋈⋈ \Join
∼: \simcolon
: \vcentcolon or
\ratio
⊣⊣ \dashv
≤≤ \le
∼::\simcoloncolon
⊢⊢ \vdash
:: \dblcolon or
\coloncolon
≤≤ \leq
≃≃ \simeq
⊨⊨ \vDash
≐≐ \doteq
≦≦ \leqq
⌢⌢ \smallfrown
⊩⊩ \Vdash
≑≑ \Doteq
⩽⩽ \leqslant
⌣⌣ \smallsmile
⊪⊪ \Vvdash
Direct Input: =<>:∈∋∝∼∽≂≃≅≈≊≍≎≏≐≑≒≓≖≗≜≡≤≥≦≧≫≬≳≷≺≻≼≽≾≿⊂⊃⊆⊇⊏⊐⊑⊒⊢⊣⊩⊪⊸⋈⋍⋐⋑⋔⋙⋛⋞⋟⌢⌣⩾⪆⪌⪕⪖⪯⪰⪷⪸⫅⫆≲⩽⪅≶⋚⪋⊥⊨⊶⊷=<>:∈∋∝∼∽≂≃≅≈≊≍≎≏≐≑≒≓≖≗≜≡≤≥≦≧≫≬≳≷≺≻≼≽≾≿⊂⊃⊆⊇⊏⊐⊑⊒⊢⊣⊩⊪⊸⋈⋍⋐⋑⋔⋙⋛⋞⋟⌢⌣⩾⪆⪌⪕⪖⪯⪰⪷⪸⫅⫆≲⩽⪅≶⋚⪋⊥⊨⊶⊷ ≔ ≕ ⩴
Negated Relations
≠= \not =
⪊⪊ \gnapprox
≱ \ngeqslant
⊈⊈ \nsubseteq
⪵⪵ \precneqq
⪈⪈ \gneq
≯≯ \ngtr
⊈ \nsubseteqq
⋨⋨ \precnsim
≩≩ \gneqq
≰≰ \nleq
⊁⊁ \nsucc
⊊⊊ \subsetneq
⋧⋧ \gnsim
≰ \nleqq
⋡⋡ \nsucceq
⫋⫋ \subsetneqq
≩ \gvertneqq
≰ \nleqslant
⊉⊉ \nsupseteq
⪺⪺ \succnapprox
⪉⪉ \lnapprox
≮≮ \nless
⊉ \nsupseteqq
⪶⪶ \succneqq
⪇⪇ \lneq
∤∤ \nmid
⋪⋪ \ntriangleleft
⋩⋩ \succnsim
≨≨ \lneqq
∉∈/ \notin
⋬⋬ \ntrianglelefteq
⊋⊋ \supsetneq
⋦⋦ \lnsim
∌∋ \notni
⋫⋫ \ntriangleright
⫌⫌ \supsetneqq
≨ \lvertneqq
∦∦ \nparallel
⋭⋭ \ntrianglerighteq
⊊ \varsubsetneq
≆≆ \ncong
⊀⊀ \nprec
⊬⊬ \nvdash
⫋ \varsubsetneqq
≠= \ne
⋠⋠ \npreceq
⊭⊭ \nvDash
⊋ \varsupsetneq
≠= \neq
∤ \nshortmid
⊯⊯ \nVDash
⫌ \varsupsetneqq
≱≱ \ngeq
∦ \nshortparallel
⊮⊮ \nVdash
≱ \ngeqq
≁≁ \nsim
⪹⪹ \precnapprox
Direct Input: ∉∌∤∦≁≆≠≨≩≮≯≰≱⊀⊁⊈⊉⊊⊋⊬⊭⊮⊯⋠⋡⋦⋧⋨⋩⋬⋭⪇⪈⪉⪊⪵⪶⪹⪺⫋⫌∈/∋∤∦≁≆=≨≩≮≯≰≱⊀⊁⊈⊉⊊⊋⊬⊭⊮⊯⋠⋡⋦⋧⋨⋩⋬⋭⪇⪈⪉⪊⪵⪶⪹⪺⫋⫌
wiki ⟩
Cartesian product (數學「關係」是「笛卡兒積」的子集)
adjacency list (也算是一種數學「關係」)
Last updated
Was this helpful?