矩陣加法

🚧 under construction -> 線性變換

線代矩陣運算 ⟩ 矩陣加法

A=[a11a12a1na21a22a2nam1am2amn]\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}B=[b11b12b1nb21b22b2nbm1bm2bmn]\mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix},則:

🔰 定義

👉 矩陣符號

🔸 性質

#
🔸 性質
👉 來源
1

線性變換性質:

  • (A+B)ij=Aij+Bij(\mathbf{A+B})_{{\color{orange}ij}} = \mathbf{A}_{{\color{orange}ij}} + \mathbf{B}_{{\color{orange}ij}}

  • (kA)ij=k(Aij)({\color{orange}k}\mathbf{A})_{ij} = {\color{orange}k}(\mathbf{A}_{ij})

矩陣加法 (定義) 矩陣係數積 (定義)

Last updated

Was this helpful?