🚧反方陣

🚧 under construction -> prove 1. 2.(1)

線代矩陣運算乘法 ⟩ 反方陣 ("inverse")

  1. (1) 反方陣唯一的。 (2) AB=I    BA=I\mathbf{AB = I} \implies \mathbf{BA = I}

  1. (1) 若 A,B\mathbf{A,B}可逆方陣,則:(AB)1=B1A1(\mathbf{AB})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1} (2) 若 M\mathbf{M}可逆方陣,則:(M1)T=(MT)1\left(\mathbf{M}^{-1}\right)^T = \left(\mathbf{M}^{T}\right)^{-1}

  • 證明:(2) (M1)TMT=(MM1)T=IT=I\left(\mathbf{M}^{-1}\right)^T \mathbf{M}^T = \left(\mathbf{M} \mathbf{M}^{-1}\right)^T = \mathbf{I}^T = \mathbf{I}

  • 相關: 變換法向量

Last updated

Was this helpful?