孟氏線截西瓦線

孟氏線截過一條西瓦線與其兩側的邊,會形成三個分點比,這三個比有固定的關係。

定理

已知 ΔABC\Delta ABCDDBC\overleftrightarrow{BC} 邊上的點,一條孟氏線分別截 AB,AD,AC\overleftrightarrow{AB}, \overleftrightarrow{AD}, \overleftrightarrow{AC}P,M,QP,M,Q 三點。

BDDC=α\dfrac{\overrightarrow{B\color{red}{D}}}{\overrightarrow{{\color{red}D}C}}={\color{blue}\alpha} ,則從「分點比」的角度可得:

  • DMMA=11+α(BPPA+αCQQA)\dfrac{\overrightarrow{D\color{red}{M}}}{\overrightarrow{{\color{red}M}A}}= \dfrac{ 1 }{ 1+{\color{blue}\alpha} } \left( \dfrac{\overrightarrow{B\color{red}{P}} }{\overrightarrow{{\color{red}P}A}} + {\color{blue}\alpha} \cdot\dfrac{\overrightarrow{C\color{red}{Q}}}{\overrightarrow{{\color{red}Q}A}} \right) \cdots (💡分點公式 )

或者用「點刻度」的符號,可寫成:

  • 1[AMD]=11+α(1[APB]+α1[AQC])\dfrac{1}{[A{\color{red}M}D]}=\dfrac{ 1 }{ 1+{\color{blue}\alpha} } \left( \dfrac{1}{[A{\color{red}P}B]} + {\color{blue}\alpha} \cdot \dfrac{1}{[A{\color{red}Q}C]} \right)

圖解

孟氏線截過西瓦線,將西瓦線上的點刻度截成「調和數列」

證明

本方法主要使用:「面積」與「向量比」之間的轉化。

假設:

  • [A,P,B]=APAB=p[A,{\color{red}P},B]=\dfrac{\overrightarrow{A\color{red}{P}}}{\overrightarrow{AB}}={\color{blue}p}

  • [A,M,D]=AMAD=m[A,{\color{red}M},D]=\dfrac{\overrightarrow{A\color{red}{M}}}{\overrightarrow{AD}}={\color{blue}m}

  • [A,Q,C]=AQAC=q[A,{\color{red}Q},C]=\dfrac{\overrightarrow{A\color{red}{Q}}}{\overrightarrow{AC}}={\color{blue}q}

  • ΔABC=Δ\Delta ABC={\color{blue}\Delta}

從面積來觀察,我們可以得到: 1️⃣ ΔAPQ=ΔAPM+ΔAMQ\Delta A{\color{red}P}{\color{red}Q}=\Delta A{\color{red}PM} + \Delta A{\color{red}MQ}

下面我們打算將這三個三角形面積全部用 Δ{\color{blue}\Delta} 來表示,然後導出我們要的結果。

原式

推論

說明

ΔAPQΔABC\dfrac{\Delta A{\color{red}P}{\color{red}Q}}{\Delta ABC}

=AP×AQAB×AC=\dfrac{ \overrightarrow{A{\color{red}P}}\times\overrightarrow{A{\color{red}Q}} }{ \overrightarrow{AB}\times\overrightarrow{AC} }

三角形面積」定義

=APABAQAC=\dfrac{ \overrightarrow{A{\color{red}P}} }{ \overrightarrow{AB} } \cdot \dfrac{ \overrightarrow{A{\color{red}Q}} }{ \overrightarrow{AC} }

向量比」性質 4

=pq={\color{blue}p}{\color{blue}q}

原假設條件

2️⃣ ΔAPQ\Delta A{\color{red}PQ}

=pqΔ={\color{blue}p}{\color{blue}q}\cdot {\color{blue}\Delta}

ΔABC{\Delta ABC} 移項

ΔAPMΔABC\dfrac{\Delta A{\color{red}PM}}{\Delta ABC}

=ΔAPMΔABDΔABDΔABC=\dfrac{\Delta A{\color{red}PM}}{{\color{blue}\Delta ABD}} \cdot \dfrac{{\color{blue}\Delta ABD}}{\Delta ABC}

ΔABD{\color{blue}\Delta ABD} 當作是過度的媒介

=AP×AMAB×ADBDBC=\dfrac{ \overrightarrow{A{\color{red}P}}\times\overrightarrow{A{\color{red}M}} }{ \overrightarrow{AB}\times\overrightarrow{AD} } \cdot \dfrac{ \overrightarrow{BD} }{ \overrightarrow{BC} }

三角形面積」定義

等高原理

=APABAMADBDBC=\dfrac{ \overrightarrow{A{\color{red}P}} }{ \overrightarrow{AB} } \cdot \dfrac{ \overrightarrow{A{\color{red}M}} }{ \overrightarrow{AD} } \cdot \dfrac{ \overrightarrow{BD} }{ \overrightarrow{BC} }

向量比」性質 4

=pm(α1+α)={\color{blue}pm}\left( \dfrac{{\color{blue}\alpha}}{1+{\color{blue}\alpha}} \right)

點刻度」性質 3

3️⃣ ΔAPM\Delta A{\color{red}PM}

=pm(α1+α)Δ={\color{blue}pm}\left( \dfrac{{\color{blue}\alpha}}{1+{\color{blue}\alpha}} \right)\cdot {\color{blue}\Delta}

ΔABC{\Delta ABC} 移項

ΔAMQΔABC\dfrac{\Delta A{\color{red}MQ}}{\Delta ABC}

=ΔAMQΔADCΔADCΔABC=\dfrac{\Delta A{\color{red}MQ}}{{\color{blue}\Delta ADC}} \cdot \dfrac{{\color{blue}\Delta ADC}}{\Delta ABC}

=AM×AQAD×ACDCBC=\dfrac{ \overrightarrow{A{\color{red}M}}\times\overrightarrow{A{\color{red}Q}} }{ \overrightarrow{AD}\times\overrightarrow{AC} } \cdot \dfrac{ \overrightarrow{DC} }{ \overrightarrow{BC} }

三角形面積」定義

等高原理

=AMADAQACDCBC=\dfrac{ \overrightarrow{A{\color{red}M}} }{ \overrightarrow{AD} } \cdot \dfrac{ \overrightarrow{A{\color{red}Q}} }{ \overrightarrow{AC} } \cdot \dfrac{ \overrightarrow{DC} }{ \overrightarrow{BC} }

向量比」性質 4

=mq(11+α)={\color{blue}mq}\left( \dfrac{1}{1+{\color{blue}\alpha}} \right)

4️⃣ ΔAMQ\Delta A{\color{red}MQ}

=mq(11+α)Δ={\color{blue}mq}\left( \dfrac{1}{1+{\color{blue}\alpha}} \right) \cdot {\color{blue}\Delta}

ΔABC{\Delta ABC} 移項

現在將2️⃣3️⃣4️⃣代入 1️⃣ 可得:

  • pqΔ=pm(α1+α)Δ+mq(11+α)Δ{\color{blue}p}{\color{blue}q}\cdot {\color{blue}\Delta}= {\color{blue}pm}\left( \dfrac{{\color{blue}\alpha}}{1+{\color{blue}\alpha}} \right)\cdot {\color{blue}\Delta} + {\color{blue}mq}\left( \dfrac{1}{1+{\color{blue}\alpha}} \right) \cdot {\color{blue}\Delta}

同除 pqmΔ{\color{blue}pqm\Delta} 可得:

  • 1m=(α1+α)1q+(11+α)1p\dfrac{1}{{\color{blue}m}} = \left( \dfrac{{\color{blue}\alpha}}{1+{\color{blue}\alpha}} \right) \cdot \dfrac{1}{{\color{blue}q}} + \left( \dfrac{1}{1+{\color{blue}\alpha}} \right) \cdot \dfrac{1}{{\color{blue}p}}

得證 ▨

Last updated

Was this helpful?