西瓦點座標

計算「西瓦點」的座標。

👉 什麼是「西瓦點

定理

PP 為三條西瓦線的交點,三條西瓦線分別交 BC,CA,AB\overleftrightarrow{BC},\overleftrightarrow{CA},\overleftrightarrow{AB}D,E,FD,E,F 三點。

假設:

BDDC=α\dfrac{\overrightarrow{B{\color{red}D}}}{\overrightarrow{{\color{red}D}C}}=\alpha , CEEA=β\dfrac{\overrightarrow{C{\color{red}E}}}{\overrightarrow{{\color{red}E}A}}=\beta , AFFB=γ\dfrac{\overrightarrow{A{\color{red}F}}}{\overrightarrow{{\color{red}F}B}}=\gamma

則:

  • P=(11+1β+γ)A+(11+1γ+α)B+(11+1α+β)CP=\left(\dfrac{1}{1+\frac{1}{\beta}+\gamma}\right)A + \left(\dfrac{1}{1+\frac{1}{\gamma}+\alpha}\right)B + \left(\dfrac{1}{1+\frac{1}{\alpha}+\beta}\right)C

或寫成:

  • P=11+(A,P,D)A+11+(B,P,E)B+11+(C,P,F)CP= \dfrac{1}{1+(A,{\color{red}P},D)}A + \dfrac{1}{1+(B,{\color{red}P},E)}B + \dfrac{1}{1+(C,{\color{red}P},F)}C

圖解

💡 下圖 A,B,C,PA,B,C,P 點可拖曳。

註解

  • (11+1β+γ)+(11+1γ+α)+(11+1α+β)=1\left(\dfrac{1}{1+\frac{1}{\beta}+\gamma}\right) + \left(\dfrac{1}{1+\frac{1}{\gamma}+\alpha}\right) + \left(\dfrac{1}{1+\frac{1}{\alpha}+\beta}\right) = 1

證明

原式

推論

說明

APPD\dfrac{\overrightarrow{A{\color{red}P}}}{\overrightarrow{{\color{red}P}D}}

=AEEC+AFFB= \dfrac{\overrightarrow{A{\color{red}E}}}{\overrightarrow{{\color{red}E}C}}+ \dfrac{\overrightarrow{A{\color{red}F}}}{\overrightarrow{{\color{red}F}B}}

=1β+γ=\dfrac{1}{\beta}+\gamma

向量比「性質 7

=αγ+γ=\alpha\gamma+\gamma

根據「西瓦定理」: αβγ=1\alpha\beta\gamma=1

=γ(α+1)=\gamma(\alpha+1)

因此:

1️⃣ P{\color{red}P}

=A+γ(α+1)D1+γ(α+1)=\dfrac{A+{\color{blue}\gamma(\alpha+1)}D}{1+{\color{blue}\gamma(\alpha+1)}}

分點「性質 1

另外:

BDDC\dfrac{\overrightarrow{B{\color{red}D}}}{\overrightarrow{{\color{red}D}C}}

=α=\alpha

原條件

因此:

2️⃣ DD

=B+αC1+α=\dfrac{B+{\color{blue}\alpha}C}{1+{\color{blue}\alpha}}

分點「性質 1

2️⃣1️⃣ 可得:

原式

推論

說明

P{\color{red}P}

=A+γ(α+1)B+αC1+α1+γ(α+1)=\dfrac{A+{\color{blue}\gamma(\cancel{\alpha+1})}\cdot \dfrac{B+{\color{blue}\alpha}C}{\cancel{1+{\color{blue}\alpha}}}}{1+{\color{blue}\gamma(\alpha+1)}}

=A+γ(B+αC)1+γ(α+1)=\dfrac{ A+{\color{blue}\gamma}(B+{\color{blue}\alpha}C) }{ 1+{\color{blue}\gamma(\alpha+1)} }

其中:

🔸 AA 的係數:

=11+γ(α+1)=\dfrac{ 1 }{ 1+{\color{blue}\gamma(\alpha+1)} }

=11+γα+γ=\dfrac{ 1 }{ 1+{\color{blue}\gamma\alpha+\gamma} }

=11+1β+γ=\dfrac{ 1 }{ 1+{\color{blue}\frac{1}{\beta}+\gamma} }

根據「西瓦定理」:

αβγ=1\alpha\beta\gamma=1

🔸 BB 的係數:

=γ1+γα+γ=\dfrac{ {\color{blue}\gamma} }{ 1+{\color{blue}\gamma\alpha+\gamma} }

=11γ+α+1=\dfrac{ 1 }{ {\color{blue}\frac{1}{\gamma}+\alpha}+1 }

同除 γ\color{blue}\gamma

🔸 CC 的係數:

=γα1+γα+γ=\dfrac{ {\color{blue}\gamma\alpha} }{ 1+{\color{blue}\gamma\alpha+\gamma} }

=11γα+1+1α=\dfrac{1}{{\color{blue}\frac{1}{\gamma\alpha}}+1+{\color{blue}\frac{1}{\alpha}}}

同除 γα\color{blue}\gamma\alpha

=1β+1+1α=\dfrac{1}{{\color{blue}\beta}+1+{\color{blue}\frac{1}{\alpha}}}

αβγ=1\alpha\beta\gamma=1

Last updated

Was this helpful?