三西瓦線可以決定三個比值,這三個比值的總和為定值。
PPP 為三條西瓦線的交點,三條西瓦線分別交 BC↔,CA↔,AB↔\overleftrightarrow{BC},\overleftrightarrow{CA},\overleftrightarrow{AB}BC,CA,AB 於 D,E,FD,E,FD,E,F 三點,
則以「分點比」的觀點可得:
PD→DA→+PE→EB→+PF→FC→=−1\dfrac{\overrightarrow{P{\color{red}D}}}{\overrightarrow{{\color{red}D}A}}+ \dfrac{\overrightarrow{P{\color{red}E}}}{\overrightarrow{{\color{red}E}B}}+ \dfrac{\overrightarrow{P{\color{red}F}}}{\overrightarrow{{\color{red}F}C}}=-1DAPD+EBPE+FCPF=−1
也可以用「點刻度」的觀點寫成:
[APD]+[BPE]+[CPF]=2[A{\color{red}P}D]+[B{\color{red}P}E]+[C{\color{red}P}F] = {\color{blue}2}[APD]+[BPE]+[CPF]=2
💡 下圖, A,B,C,PA,B,C,PA,B,C,P 點可拖曳。
PPP 點可以是任意點(一般點),但不在 ΔABC\Delta ABCΔABC 的三邊上。
也可以寫成「分點比」的形式: (P,D,A)+(P,E,B)+(P,F,C)=−1(P,{\color{red}D},A)+(P,{\color{red}E},B)+(P,{\color{red}F},C)=-1(P,D,A)+(P,E,B)+(P,F,C)=−1
圖解
說明
根據「同底原理」:
PD→DA→=ΔPBCΔCBA\dfrac{\overrightarrow{P{\color{red}D}}}{\overrightarrow{{\color{red}D}A}}= \dfrac{\Delta P{\color{blue}BC}}{ \Delta {\color{blue}CB}A }DAPD=ΔCBAΔPBC
同理:
PE→EB→=ΔPCAΔACB\dfrac{\overrightarrow{P{\color{red}E}}}{\overrightarrow{{\color{red}E}B}}= \dfrac{\Delta P{\color{blue}CA}}{ \Delta {\color{blue}AC}B }EBPE=ΔACBΔPCA
PF→FC→=ΔPABΔBAC\dfrac{\overrightarrow{P{\color{red}F}}}{\overrightarrow{{\color{red}F}C}}= \dfrac{\Delta P{\color{blue}AB}}{ \Delta {\color{blue}BA}C }FCPF=ΔBACΔPAB
將以上三式相加:
原式
推論
PD→DA→+PE→EB→+PF→FC→\dfrac{\overrightarrow{P{\color{red}D}}}{\overrightarrow{{\color{red}D}A}}+ \dfrac{\overrightarrow{P{\color{red}E}}}{\overrightarrow{{\color{red}E}B}}+ \dfrac{\overrightarrow{P{\color{red}F}}}{\overrightarrow{{\color{red}F}C}}DAPD+EBPE+FCPF
=ΔPBCΔCBA+ΔPCAΔACB+ΔPABΔBAC=\dfrac{\Delta P{\color{blue}BC}}{ \Delta {\color{blue}CB}A }+\dfrac{\Delta P{\color{blue}CA}}{ \Delta {\color{blue}AC}B }+ \dfrac{\Delta P{\color{blue}AB}}{ \Delta {\color{blue}BA}C }=ΔCBAΔPBC+ΔACBΔPCA+ΔBACΔPAB
=ΔPBC+ΔPCA+ΔPABΔCBA=\dfrac{ \Delta P{\color{blue}BC}+\Delta P{\color{blue}CA} +\Delta P{\color{blue}AB} }{ \Delta {\color{blue}CB}A }=ΔCBAΔPBC+ΔPCA+ΔPAB
分數通分
=ΔABCΔCBA=−1=\dfrac{ \Delta ABC }{ \Delta {\color{blue}CB}A }=-1=ΔCBAΔABC=−1
面積「性質 3」
=−1=-1=−1 ▨
面積「性質 2」
1️⃣ PD→DA→+1\dfrac{\overrightarrow{P{\color{red}D}}}{\overrightarrow{{\color{red}D}A}}+ 1DAPD+1
=PD→+DA→DA→=\dfrac{ \overrightarrow{P{\color{red}D}} + \overrightarrow{{\color{red}D}A} }{\overrightarrow{{\color{red}D}A}}=DAPD+DA
=PA→DA→=\dfrac{\overrightarrow{PA}}{\overrightarrow{{\color{red}D}A}}=DAPA
=AP→AD→=\dfrac{\overrightarrow{AP}}{\overrightarrow{A{\color{red}D}}}=ADAP
=[APD]=[APD]=[APD]
2️⃣ PE→EB→+1\dfrac{\overrightarrow{P{\color{red}E}}}{\overrightarrow{{\color{red}E}B}}+ 1EBPE+1
=[BPE]=[BPE]=[BPE]
3️⃣ PF→FC→+1\dfrac{\overrightarrow{P{\color{red}F}}}{\overrightarrow{{\color{red}F}C}}+1FCPF+1
=[CPF]=[CPF]=[CPF]
1️⃣2️⃣3️⃣三式相加:
PD→DA→+PE→EB→+PF→FC→+3\dfrac{\overrightarrow{P{\color{red}D}}}{\overrightarrow{{\color{red}D}A}}+ \dfrac{\overrightarrow{P{\color{red}E}}}{\overrightarrow{{\color{red}E}B}}+ \dfrac{\overrightarrow{P{\color{red}F}}}{\overrightarrow{{\color{red}F}C}}+3DAPD+EBPE+FCPF+3
=[APD]+[BPE]+[CPF]=[APD]+[BPE]+[CPF]=[APD]+[BPE]+[CPF]
−1+3-1+3−1+3
=2=\color{blue}2=2 ▨
Last updated 4 years ago
Was this helpful?